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Abstract 

The coupling impedance of the vacuu~n chamber can be obtained from the 

wake potential left by a bunch of finite extent. Oftentimes, however, the impe- 

dance so obtained violates the condition that its real part must be everywhere 

non-negative. The proper treatment is derived and discussed. 

It is well known that the Fourier transform of the iprtegrnted longitudinal wake 

potential W(r) of a point charge in a vacuum chamber is the longitudinal coupling 

impedance Z(w) of the vacuum chamber. However, during numerical simulation or 

actual experimental measurement, a finite bunch is used instead. From the wake 

potential of the bunch, the coupling impedance of the vacuum chamber can also be 

derived. However, care must be, exercised in.Lhe Jourier transform so that the real 

part of Z(w) is always non-negative. This necessity originates from the fact that 

the bunch will not gain energy from its self-field while p assing through the vacuum 

chamber. 

If the bunch has a longitudinal distribution p(z), its wake potential p(z) is related 

to the point-charge wake or Green-function wake W(t) by 

I&‘(z) = / dz W(z - z’)p(r’) (1) 

‘Operated by the Universities Research Association, Inc., under contract with the U.S. Depart- 

ment of Energy. 
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The coupling impedance Z(w) for that length of the vacuum chamber is given by 

W(z) = & / dwZ(w)e-“““I” , 

where c is the velocity of light. The bunch distribution can be Fourier analysed as 

p(z) = J dugJJ)e-‘w”‘” (3) 

Substituting Eqs. (2) and (3) in Eq. (l), we obtain easily 

k(z) = / dwZ(w)jqw)e-‘wz~c . (4) 

Thus, if we denote the Fourier transform of p(z) by 

2(w) = &- Jdwti(*)e’““+ ) 

the true coupling impedance can be derived from 

(5) 

For a symmetric bunch, like a Gaussian, we usually place the zero of the coordinate 

at the center of the bunch, OF 

(7) 

where CJ~ is the rms length, so that the bunch spectrum 

is totally real. In this way, 2( w will have exactly the same phase as the impedance ) 

Z(w). When the bunch is short enough, Z(w) can actually be used to approximate 

the true impedance at low frequencies (w < c/u!). For this reason, a symmetric 

bunch is usually used in numerical simulations. Because of the multiplication of 

the exponential factor from l/F(w), Eq. (6) 1 a so e t 11. s us that there will be loss of 

information when w is large. This is just the uncertainty principle which states that 

a shorter test bunch is necessary whenever high-frequency information is required. 

2 



In TBCI, the test bunch is a truncated Gaussian. The code starts computing the 

wake W(z) from the first charged particle in the bunch. In other words, the zero 

of the coordinate is placed at the very beginning of the bunch. If we stick to this 

coordinate system to obtain Z(W) through Eq. (5), we also need to do the same for 

the spectrum of the bunch. That is, instead of Eqs. (7) and (S), we have 

P(Z) = &e 
-1 (Eg 

0 5 .z 5 21) 

where 2e is the full width of the symmetric bunch, and approximately 

/qw) = L/wut:c)~,il~ ) (10) 

which is no longer real. Therefore, Z(w) and Z(w) differ by a phase. In other words, 

the real part of Z(w) will not be positive semi-definite. This implies that Z(W) can no 

longer be an approximate impedance even when the bunch length is extremely short. 

An easier way is to shift the zero of the coordinate of the wake potential I@(z) to the 

center of the bunch by the replacement 

Pi+) + ti(z + C) (11) 

in Eq. (5) and use Eq. (8) for the bunch spectrum. Again, this will guarantee Z(W) 

and Z(w) to have the same phase. In practice, l7e Z(W) obtained this way may still 

not be positive semi-definite at all frequencies. These occasional negative excursions 

arise from the truncation of the wake potential in the actual numerical calculation or 

experimental measurement. 

Sometimes, the test bunch is not exactly symmetric, especially during experiment 

measurement. In this case, there will not be a coordinate system in which the bunch 

spectrum is real for all frequencies. Theoretically, we can choose any point as the 

zero of the coordinate and carry out the Fourier transforms for the wake and the 

bunch density. However, the rapid phase oscillations such as the one in Eq. (10) 

can contribute to excessive error when the impedance is computed via Eq. (6). To 

minimize the error, we can assign the zero of the coordinate to a point near the center 

of the bunch so that the phase fluctuation of the spectrum will become much slower. 

In the event that we are interested in the impedance of a particular small range of 

frequency such as a sharp resonance, we can move the zero-coordinate point around 

until p(w) is mostly real in that particular frequency range. 
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